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Spinodal decomposition in mixtures containing nematogens 

by JOHN R. DORGAN 
Department of Chemical Engineering, University of California at  Berkeley, 

Berkeley, California 94720, U.S.A. 

(Received 1 1  September 1990; accepted 18 February 1991) 

A general stability criterion is presented for mixtures containing nematic liquid 
crystals. Conditions for absolute phase instability are found and represent a 
generalization of the usual spinodal concept. Physically, these conditions represent 
instabilities with respect to variations in the systems composition, degree of 
molecular ordering or some combination thereof. An example calculation corre- 
sponding to a liquid-crystalline polymer is presented. This calculation is based upon 
a well known lattice model which includes energetics that are dependent upon 
molecular orientation. Spinodal decomposition has profound effects on the 
morphology of a system which undergoes phase separation. Recent experimental 
and theoretical studies have attempted to explore these consequences in liquid- 
crystalline systems. None gives a rigorous definition of what is meant by spinodal in 
a mixture with orientational degrees of freedom; the material presented here clarifies 
this issue. 

1. Introduction 
The concept of the spinodal as the thermodynamic limit of phase stability is well 

established. The consequences regarding the morphology of a system which undergoes 
spinodal decomposition are profound [ 11. The investigation of spinodal decompo- 
sition in mixtures containing polymeric nematic liquid crystals is of great technological 
importance and is the focus of recent experimental and theoretical studies [2-61. None 
of these works has given a definition of the spinodal region which goes beyond calling it 
an unstable regime [S]. Liquid-crystalline systems are unique and the meaning of the 
spinodal is distinct from non-ordering systems. An exposition on the calculation and 
interpretation of the spinodal curve in multicomponent mixtures containing nematic 
liquid crystals is presented here. 

Previous work concerning the thermodynamic phase stability of liquid-cr ystalline 
materials is scarce. The notable exception is the work of Stecki and Kloczkowski [7,8]. 
These authors correctly identify the general criterion for phase stability. They apply 
this criterion to test the stability of the pure component isotropic phase with respect to 
nematic and smectic A ordering. 

This paper presents the general stability criterion for mixtures containing both 
regular and nematic fluids. This criterion is shown to be a generalization of the usual 
spinodal concept. An example phase diagram is presented based upon a lattice theory 
of rod-like molecules in solution. 

2. Theoretical 
The analysis of phase stability begins with an expression for the appropriate 

thermodynamical potential. Stability of the thermodynamic system with respect to  
variations in composition and orientation is of interest for liquid-crystalline materials. 
Example calculations based on a lattice model are presented in the next section; this 
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348 J. R. Dorgan 

model does not allow for compressibility of the solution. This means the partition 
function yields a Helmholtz rather than a Gibbs free energy. The extension of the 
formalism presented here to compressible systems is straightforward. In order to 
develop this formalism, consider the case where the Helmholtz free energy is expressed 
as a function of composition and orientation 

Here, y j  represents a scalar order parameter, ui is the volume fraction for each species 
present and F is a dimensionless free energy density function. The number of 
nematogens may be equal to or less than the total number of species present, (m < n). 

The conditions for absolute phase stability correspond to a minimum in the free 
energy of the system. At this minimum energy state any variation in the values of the 
independent variables must lead to an increase in the systems energy 

6 A  2 0. (2) 
By this statement it is meant that the change in the systems energy for small changes in 
any components order parameter or volume fraction must be positive. 

In considering the stability of the system, care must be taken to include the restraint 
that the number of each species present is conserved 

This constraint is included by rewriting the free energy expression in terms of the (n  - 1) 
independent volume fractions 

This guarantees that no inadmissible variations in composition are considered in the 
analysis. 

Examination of the change in the free energy when a fluctuation occurs within the 
fixed system volume, forms the basis of the stability analysis. Consider the change in 
the systems intensive free energy caused when the values of ui and y j  fluctuate by a small 
amount. This may be expressed in the form of a Taylor series expansion about the 
homogeneous equilibrium state by 

The derivatives are evaluated at the uniform equilibrium conditions. All terms are 
implied by the summation convention. The variations are arbitrary; they may be either 
positive or negative. The first order terms must vanish in light of condition (2). 

Stability of the equilibrium state is ensured when the second order terms are 
positive for arbitrary variations in the independent variables [9]. Likewise, the system 
is absolutely unstable if the second order terms are negative for such variations. This is 
the condition invoked by Stecki and Kloczkowski in studying the stability of the pure 
component isotropic phase of a nematogen [S]. This is also the general criterion used 
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Spinal decomposition in nematogens 349 

for compressible solutions [lo]. As already demonstrated, the expansion of the free 
energy about an equilibrium state takes the form of a Taylor series. The second order 
terms in this expansion (the second variation) take the form 

where ui and uj  are dummy variables representing the independent volume fractions 
and the order parameters for the species contained in the mixture. 

The main result presented here is the conditions under which the equilibrium state 
becomes absolutely unstable. This means that the systems free energy can be lowered 
by an infinitesimal variation in one or more of its independent arguments. The second 
variation may be written as 

S z  =$ Eij6ui6uj, (7) 

where the matrix of all second derivatives, E,, has been introduced. Examination of the 
stability criterion when one field variable is varied while all others are held constant 
results in 

Eii(6ui)2 > 0. (8) 

Therefore, a conclusion of this analysis is that stability requires that all second 
derivatives of the intensive free energy with respect to a single independent argument be 
positive. However, this condition is not the most general restriction. 

The matrix Eij  is symmetric and may therefore be diagonalized via an expansion in 
terms of its eigenvectors. The eigenvectors are defined according to equation (9) for 
each associated eigenvalue Ik. In this and the following, subscripts k and 1 refer to the 
diagonalized form while i and j refer to the original form where 

Ek&, = lk6uk, (9 4 

6u,= 6uk. (9 b) 

and 

The basis vectors of the bilinear form defined by equation (7) may be expanded in terms 
of the eigenvectors where 

6ui = aik6uky (10a) 

6Uj = aj&J,. (10 b) 

and 

The values of a are transformation matrices from the old basis to the new basis 
corresponding to the eigenvectors. 

Substitution of (10) into (7) leaves the following relationship 

62 = Eij6Ui6Uj = cli@j,Eij6U&4,. (1 1) 

The product of the first three terms on the right hand side of equation (1 1) represent the 
transformation of E i j  to the eigenvector basis [11] by 

Ek, = ai@jlEij. (12) 
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3 50 J. R. Dorgan 

Making use of the definition of the eigenvectors in equation (9) after substitution of (12) 
into (1 1) leads to the equality 

6, = E i j 6 ~ , 6 u j  = 1(6~,)’. (13) 

Thus, the sign of the second variation is governed by the sign of the eigenvalues of the 
matrix of second derivatives; thermodynamic phase stability requires that all 
eigenvalues of the matrix be positive. Each eigenvalue is associated with a correspond- 
ing eigenvector. If any eigenvalue is negative, the system is absolutely unstable with 
respect to variations in the associated eigenvector. The eigenvalues are real and the 
determinant of E i j  is given by the product of these eigenvalues. Thus the stability 
criterion may be stated succinctly as, det(Eij)>O. It is to be noted that if the second 
variation vanishes, higher order terms in the expansion must be examined in order to 
determine the stability of the system. 

To fix, ideas, consider a binary mixture composed of a nematogen and a non- 
nematogen. The free energy function follows according to equation (1) by 

To make a connection with the usual spinodal concept, consider the restriction (8) 
when the independent quantity being varied is the independent volume fraction u l ,  
stability requires 

The system is absolutely unstable when 

which is just the usual definition of the spinodal region for a binary mixture [l]. 

derivative matrix 
The general stability of the binary mixture is governed by the eigenvalues of the 

rg) 
(&) 

For an n x n matrix, an nth order polynomial must be solved in order to find the n 
eigenvalues. In this case the solutions to the quadratic equation are given by [lZ] 

A *  =$(El 1 + J%Z) + Cm 1 - E2,l2 +(J%2)21”2, (18 4 
and 

Here, subscripts denote the row and column of the matrix. It is evident that the 
condition of positive second derivatives with respect to both independent arguments is 
not sufficient to ensure phase stability. Using the determinant condition the stability 
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Spinal decomposition in nematogens 351 

requirements for this example binary system may be expressed by the following 
inequalities: 

and 

The second inequality ensures that the positive determinant does not result from the 
existence of two degenerate negative eigenvalues. If either of these conditions are not 
met the system is absolutely unstable, it is then within the spinodal region. 

3. Calculations 
The well known lattice theory of Flory, as modified to include free volume and 

anisotropic energetics [13], may be put into the functional form of equation (1). This 
transformation is accomplished through the use of an approximation introduced by 
Marrucci and Ciferra [14] along with the original Flory approximation for the 
distribution function [l5]. The resulting expression for the extensive free energy is 
given by 

A 
RT 
-= -(n 

where 8 is the reduced temperature, Prepresents the reduced volume of the mixture, y is 
the Flory order parameter and x is an interaction parameter. Division by the total 
number of lattice sites, no, gives the intensive free energy density. 

Differentiation of the extensive free energy with respect to the number of rod-like 
molecules, n,, and solvent molecules, n,, yields expressions for the chemical potentials. 
Letting primed quantities represent those in an anisotropic phase, this procedure gives 
for the rod-like molecule 

A&/RT = I n 2  + u:( y - 1) + uix, (1 -5) + x, (z- 1) 
X r V  Ex, 
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352 J. R. Dorgan 

while for the solvent molecule one obtains 

where use is made of the following definitions for the mixtures reduced volume and the 
quantity a given by 

p 1 = (8 +;) , 

and 

Differentiation of either the extensive or intensive free energy with respect to the order 
parameter gives the following expression which may be solved to find the equilibrium 
value for y 

This equation has two solutions; the lower value of y is substituted into the derived 
expressions for the chemical potentials to calculate values corresponding to an 
anisotropic (nematic) phase. For the isotropic phase, the substitution y = x, is required 
[lS, 161. 

Using the conditions, Api  = Api, where the prime again denotes an anisotropic 
phase, biphasic equilibrium conditions may be found. For this example calculation, the 
parameter values correspond to a liquid-crystalline polymer and are given in the 
caption of figure 1. The calculation proceeds by fixing the temperature and assuming 
values for 0: and u,. The order parameter, y, is found from equation (23). Using this 
value for y in the expression for pi, the equality, pi = pr, is solved to give a new value of 
0,. Next, the equality, p;=pu,, is met by finding a new value for u:. These new values are 
taken as the assumed values and the procedure is repeated until the values of v: and u, 
no longer change. Once this solution is known, the temperature is increased to the next 
value. For the phase diagram of figure 1, a total of seventy-five points are used in 
plotting each equilibrium (binodal) line. 

Also shown in figure 1 is the spinodal curve found from the eigenvalue criterion. 
This curve is calculated by fixing the temperature and incrementing the composition to 
lower and lower values. For this calculation fifty increments each are used to cover both 
the composition and temperature ranges. At each increment the values of the pure 
second derivative with respect to composition and the determinant of E ,  are found. At  
high enough temperature and cornposition these quantities are positive. At lower 
values of temperature and composition the derivatives and determinant are negative. 
The largest composition at which one of these quantities passes through zero is taken as 
the spinodal composition for the given temperature. The spinodal curve calculated 
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Figure 1. A temperature-composition phase diagram for a liquid-crystalline polymer (LCP) in 

solution. The solid curves represent the equilibrium between the biphasic region and the 
isotropic and nematic phases. The dashed curve represents the limit of stability for the 
nematic phase. The aspect ratio of the polymer is fifty (x, = 50) and the relative size of the 
solvent is unity (xs= 1). A value of zero is used for the isotropic interaction parameter 
(x=O) thus the isotropic spinodal is not shown. 

from the usual criterion for an incompressible binary mixture is also shown. This curve 
is calculated by fixing composition and incrementing the temperature to lower values; 
the temperature at which the second derivative passes through zero is taken as the 
spinodal temperature for the given composition. The same temperature and compo- 
sition increments are used in the determinant case. 

4. Discussion 
The results of the equilibrium calculation are shown in figure 1, which is a 

temperature-composition phase diagram. The solid lines represent the equilibrium 
boundaries between the isotropic phase, the biphasic regime and the concentrated 
nematic phase. The ordinate is the ratio of temperature to the temperature at  which the 
biphasic equilibrium reaches the athermal limit, that is, the temperature where 
energetic effects become negligible and entropy effects are dominant. It is clear that the 
energetics favour the formation of an anisotropic phase; they widen the biphasic regime 
and exclude the solvent from the nematic phase as the temperature is lowered. 

That the criterion presented represents a new and distinct interpretation of what is 
meant by spinodal is demonstrated in figure 2. The scaled values of the second 
derivatives of the intensive free energy along with the determinant of E ,  are plotted 
versus the volume fraction of the nematic component for a given reduced temperature. 
A range of unstable compositions exists at the chosen temperature, a reduced 
temperature of one-third. This instability is demonstrated by the fact that the 
determinant is negative for a range of composition. It is seen that the determinant may 
be negative while the second derivative with respect to composition is positive; the 
usual criterion for stability in a binary system is not valid! It is also worth mentioning 
that the second derivative with respect to the order parameter is everywhere positive. 
This means that this particular instability is not entirely orientational in nature, rather 
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Figure 2. Values of the determinant of the stability matrix and the second derivatives of the free 

energy versus composition at fixed reduced temperature. Note that the determinant is 
negative while the second derivative with respect to composition is everywhere positive. 
The usual stability criterion for an incompressible binary mixture is not valid. A, 
(d2A/dv2); +, (d2A/dy2)* lOe3; A ,  (Determ)* 10e3; 0,  (d2A/dydv)* 1Oe2. 

it is of a mixed-mode origin. The system is unstable with respect to a variation in one of 
the eigenvectors. These eigenvector variations are composed of composition and order 
parameter fluctuations. 

The nematic phase is absolutely unstable beyond the spinodal curve; it is subject to 
incipient phase transformation. The process of creating a new phase must occur at 
some finite rate; nothing, however, may be inferred about the kinetics of the process 
based upon these calculations. The usual criterion based solely on the second derivative 
with respect to composition is clearly inadequate. As the two phase region is entered the 
nematic phase should reach a classical stability limit. The usual criterion does not 
exhibit this type of behaviour; it is possible to pass from the nematic phase into the two 
phase region without ever crossing the spinodal. 

5. Conclusions 
A new, general phase stability criterion for mixtures containing nematic liquid 

crystals is presented. It is shown that the sign of the eigenvalues of the matrix of second 
derivatives of the intensive free energy dictates the stability of an equilibrium state. The 
conditions under which these mixtures become absolutely unstable are given. This 
criterion should help to clarify what is meant by spinodal decomposition when 
mixtures containing nematic liquid crystals or their polymeric forms are referred to in 
the literature. It is demonstrated that the usual criterion for phase stability in a binary 
system is not valid when considering a material with orientational degrees of freedom. 

The processing of liquid-crystalline polymers from the nematic state is a subject of 
technological interest and the criterion presented here should be conceptually useful to 
those involved. A knowledge of the conditions under which mixtures containing liquid- 
crystalline polymers become unstable to infinitesimal fluctuations should be useful in 
understanding the post-processing morphology of these materials [3,4,6]. 
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